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The CPMG sequence has been extremely useful for efficient mea-
surements of NMR signal, spin–spin relaxation, and diffusion, par-
ticularly in inhomogeneous magnetic fields, such as when samples
are outside the magnet and RF coil. Due to the inaccuracy of the
pulses and the off-resonance effects, the CPMG echoes have con-
tributions from the Hahn echo as well as signals that are similar
to stimulated echoes. The systematic understanding of the CPMG
pulse sequence requires decomposing the magnetization dynam-
ics into different coherence pathways. In this paper, we describe
a method to classify the CPMG coherence pathways and illustrate
the nature of these types of pathways. This classification shows that
direct echo and stimulated echoes are the major contribution to the
CPMG signal. It also provides a clear understanding of the effect
of restricted diffusion in porous media. C© 2002 Elsevier Science (USA)

Key Words: CPMG; coherence pathway; off-resonance effects;
diffusion; restricted diffusion.
I. INTRODUCTION

The CPMG sequence (1, 2) is remarkable in producing a long
train of echo signals that enables efficient measurements of spin–
spin relaxation and the diffusion constant, as well as maximizing
signal-to-noise ratio in various challenging experimental condi-
tions (3–5). When the resonance linewidth is much less than the
RF field strength, ω1, the π pulses can be effective 180 degree
rotations of magnetization to refocus the magnetic field inho-
mogeneity at each echo time. This is the direct echo pathway.
When the pulses are inaccurate or the linewidth is comparable
to ω1, there will be a finite probability for the magnetization
to remain unchanged or rotated to the longitudinal direction
(6). In general, many coherence pathways (7) contribute to the
CPMG echo signals and the number of pathways grow exponen-
tially as a function of the echo number (N ), ∼3N . The effects
of an inhomogeneous field on the CPMG sequence have been
researched for CPMG echoes (8–12). Goelman and Prammer
(8) have partitioned the coherence pathways into direct echo
and indirect echoes and simulate the echo signals using a subset
of the coherence pathways that are most important. Hürlimann
(12) has presented a thorough analysis of all coherences and
diffusion effects. For example, the 15th echo has about 106 co-
herence pathways and the 50th echo has 1024. Thus, it is diffi-
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cult to extend such calculation to high echo numbers due to the
enormously large number of coherence pathways. Furthermore,
such formalism is developed for unrestricted diffusion. For re-
stricted diffusion when the mean squared displacement is no
longer proportional to time, each coherence pathway has to be
reexamined (13–15). For example, the diffusion constant can be
dependent on the diffusion time and it is unclear what diffusion
constant should be used to analyze the CPMG echo decay in
porous media.

The current paper presents a classification of the coherence
pathways of CPMG and the diffusion effects in constant mag-
netic field gradient (7, 8, 12). We show that only a fraction of the
total number of pathways have a major contribution to the CPMG
echoes. These coherence pathways are characterized by a com-
bination of segments like stimulated echo and spin echo (16).
This allows us to obtain the spectrum and the diffusion decay
rates of large-N echoes. Using this classification, we have iden-
tified the diffusion time for all coherence pathways and found
that it is appropriate to use the short-time diffusion constant to
describe the CPMG echo decay due to restricted diffusion.

II. BRIEF REVIEW OF CPMG COHERENCE PATHWAYS

We follow the notations used in Ref. (12) in defining three
states of spin magnetization of an ensemble of spin-1/2 nuclei,
M0, M−, and M+:

M0 = Mz,

M+ = Mx + i My [1]

M− = Mx − i My .

These states are marked by q which can be 0, +1, and −1 (or 0,
+, and −), respectively. The magnetization vector, M, is ex-
pressed using the bases of M0, M−, and M+. We denote the
rotation of the magnetization due to a RF pulse by a matrix, R,

M(tp) = R · M(0). [2]

Here, M(0) and M(tp) are the magnetization vectors before
and after the pulse and the pulse duration is tp. R depends
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on the Larmor frequency offset from the RF frequency ωRF,
�ω0 ≡ γ |B0| − ωRF , ω1, and tp. Then, the nutation frequency

is 	 ≡
√

ω2
1 + �ω2

0 where ω1 = γ B1/2, and the tipping angle
is 	tp. The matrix elements, Rl,m , are given in Ref. (12) and
repeated here
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[1 − cos(	tp)]e+i2ϕ. [7]

ϕ is the phase of the pulse. In this paper, we consider the CPMG
sequence and thus encounter two rotations for the π/2 and π

pulses. We will note the matrices by Lq,q ′ for the π/2 pulse and
�q,q ′ for the π pulse.

We label the magnetization state between the π pulse k and
k + 1 by qk , which can be 0, +1, and −1. A coherence pathway
for the N th echo is characterized by a series of N + 1 numbers,
q0, q1, q2, . . . , qN . For the N th echo, qN should be +1 since the
transverse magnetization is to be detected. q0 is the coherence
after the initial π/2 pulse, and it can be + or − selected by
the usual phase cycling of the π/2 pulse. The contribution of a
coherence pathway to the magnetization of the N th echo, in the
absence of relaxation and diffusion, is

Mq0,q1,...,qN

M0
=

(
L0,q0

N∏
k=1

�qk ,qk−1

)
exp

(
i�ω0

N∑
k=0

qktk

)
, [8]

where M0 is the equilibrium magnetization. An echo occurs
when the phase factor becomes zero,

N∑
k=0

qktk = 0, [9]
where tk is the time duration between pulse k and k + 1. The
observed echo M is a sum of all coherence pathways.
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The effects of spin–spin and spin–lattice relaxation can be
readily incorporated into the above formula by a multiplicative
factor,

exp

[
−

N∑
k=1

(
q2

k

/
T2 + 1 − q2

k

T1

)
tk

]
, [10]

since T1 and T2 are effective when qk is 1 or 0, respectively. The
effect of diffusion introduces an extra factor in Eq. [8],

〈
exp

(
i

N∑
k=0

qkφk

)〉
. [11]

Here, φk is the random phase factor due to diffusion between
pulse k and k + 1 in the presence of magnetic field gradients.
The angle brackets 〈. . .〉 represent an ensemble average of the
random phase factors, φ0, φ1, φ2, . . . , φN . For unrestricted dif-
fusion in a constant field gradient g, this contribution can be
written as (12, 17)

〈
exp

(
i

N∑
k=1

qkφk

)〉
≡ exp

(−ηQN γ 2g2 Dt3
e N

)
, [12]

where QN denotes a coherence pathway for the N th echo and
ηQN is the normalized diffusion decay rate. γ is the gyromag-
netic ratio and D is the diffusion constant. Hürlimann has cal-
culated ηQN of all coherence pathways for early echoes (12) by
finding all QN ’s. In this paper, we will classify the coherence
pathways by a series of segments, for instance, direct echo, i.e.,
+ −, singly stimulated echo, i.e., − 0 +, and triply stimulated
segment, i.e., − − 00 + +. Such classification will allow more
rapid calculation of η and thus extend the analysis of CPMG
echoes to much larger N . Also important, this classification will
be useful to understand the effects of restricted diffusion.

Table 1 shows a list of all coherence pathways for the fifth
echo and the corresponding η for each coherence pathway or-
dered by the value of ηN . Within each class, all coherence path-
ways have the same amplitude. Several interesting observations
can be made from Table 1. First, permutations of zeros and the
corresponding rearrangement of + − and − + segments in a
coherence pathway do not change ηQN , for example, classes 1–
7. In fact, some of the permutations are completely degenerate
with identical amplitude, such as just changing the positions of
+ 0 − within class 2. However, a change from two − 0 + seg-
ments to one − 00 + segment will cause a sign change in the
amplitude, classes 3 and 4, although the decay rate remains.
Second, the presence of zeros increases ηN by 2 for each “0” in
the coherence pathways in classes 1–7. Third, the presence of

one + + − − segment increases ηN by 24 and a + + + − − −
increases ηN by 120.
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TABLE 1
All Coherence Pathways for the Fifth Echo

Class Nη nQ Coherence pathway : q0q1q2q3q4q5

1 5 1 − + − + − +
2 7 4 + 0 − + − +, + − 0 + − +,

+ − + 0 − +, + − + − 0 +
3 9 3 − 00 + − +, − + 00 − +, − + − 00 +
4 9 3 − 0 + 0 − +, − 0 + − 0 +, − + 0 − 0 +
5 11 2 + − 000 +, + 000 − +
6 11 2 + 0 − 00 +, + 00 − 0 +
7 13 1 − 0000 +
8 29 3 − + + − − +, − + − − + +, − − + + − +
9 31 6 + + − − 0 +, + − − + 0 +, + + − 0 − +,

+ − 0 − + +, + 0 + − − +, + 0 − − + +
10 33 3 − − + 00 +, − 0 − + 0 +, −00 − + +
11 53 1 − − + − + +
12 55 2 + − − 0 + +, + + 0 − − +
13 57 2 − − 0 + 0 +, − 0 − 0 + +
14 81 1 − − 00 + +
15 125 1 − − − + + +
Note. ηQ N is the decay factor; nQ is the number of permutations with the

same ηQ N . Within each class, all coherence pathways have the same amplitude.
Note that from class 7 to 8, there is a jump in Nη due to the presence of + + − −
in the coherence pathways.

III. CATEGORIES OF COHERENCE PATHWAYS

The above observation provides a motivation for the following
classification of coherence pathways based on their contribution
to Nη.

A. Direct Echo

This is the simplest class of coherence segments, character-
ized by the alternating + and −,

+ − and − +. [13]

The amplitude of this coherence segment is given by

�+,−. [14]

With this segment alone, an entire echo train can be constructed:

q0 · · · − + · · · − +︸ ︷︷ ︸
N

. [15]

From Eq. [9], q0 is determined to be − when N is odd, and
+ when N is even. It is named the direct echo in reference to
the original idea of spin echo by Hahn that the role of the π

pulses is to invert the magnetization (16 ) and changing the co-
herence from − to + or + to −. The diffusion-induced phases
φ ’s cancel each other between the adjacent intervals over a time
k

period on the order of tE . Because of this cancelation over the
shortest time interval, this coherence pathway decays the slow-
NG

est among all pathways. This pathway can be the predominant
one for the on-resonance signal with perfect π pulses. This can
be seen from the matrix elements, Eq. [7], that �+,− = 1 for
�ω = 0 and ω1tp = π . However, in most experimental condi-
tions, it is nevertheless difficult to maintain ω1tp = π for the
entire sample volume. Thus, for large echo numbers, the contri-
bution from the direct echo will invariably decay. Furthermore,
the off-resonance amplitude of direct echo is generally reduced
from the on-resonance signal and it also decays due to the less
than unity of the matrix elements. We will discuss the echo spec-
trum and the effects of nonideal pulses later.

B. Singly Stimulated Echoes

This class is very similar to the stimulated echo also described
by Hahn (16 ). The basic segments are formed by a − and a +
separated by a few 0’s,

−0 · · · 0︸ ︷︷ ︸
s1

+, and +0 · · · 0︸ ︷︷ ︸
s1

−, [16]

where s1 is the number of zeros between the + and −. To form a
complete coherence pathway for the N th echo, one may have ns1

number of such segments as well as segments with other s1. The
total number of 0’s would be N1 = ∑

s1
s1ns1 . Then, (N − N1)/2

number of direct echo segments, +− or −+ are to be included.
Again, q0 can be determined by using Eq. [9]. The amplitude of
one of such coherence segments is given by

�+,0�0,0
s1−1�0,−. [17]

The diffusion factor ηN is given by

ηN = (3N1 + 1) + (N − N1 − 1) = N + 2N1. [18]

The term 3N1 + 1 corresponds to the stimulated segment and the
second term N − N1 − 1 is due to the direct echo segments. This
result can be easily understood by comparing to the diffusion
decay in a stimulated echo experiment (16 ) using pulsed field
gradients (18). In a stimulated echo experiment, three π/2 pulses
are used:

π/2 − δ − π/2 − � − π/2 − δ − echo. [19]

During the two time periods of δ, a pulsed field gradient g is
applied. It has been shown (16 ) that the decay factor due to
diffusion is

exp

[
−Dγ 2g2δ2

(
� + 2

3
δ

)]
. [20]
The coherence pathway in the stimulated echo sequence is iden-
tical to the stimulated segment in CPMG. In the case of CPMG,
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δ = te/2, � = s1te. Thus, the decay during the stimulated seg-
ment is 3N1 + 1. Including the direct echo segment, it is straight-
forward to arrive at Eq. [18].

The exponent in Eq. [20] is often rewritten in terms of the
mean-square displacement (〈r2〉) of the diffusing molecules at
a diffusion time � + 2δ/3 (19, 20):

−(γ gδ)2〈r2〉/6. [21]

This expression illustrates an important understanding of the
stimulated echo sequence and also the stimulated segment in
CPMG that the attenuation is a measure of the net diffusion dis-
placement between the time period from the beginning to the end
of the sequence, irrespective of the trajectories that a molecule
may experience (19). Thus, this expression (Eq. [21]) is valid for
restricted diffusion or any other forms of molecular dynamics
provided (γ gδ)2〈r2〉/6 � 1. Using this argument, we observe
that the diffusion time for a direct echo segment is te/3 [21]
which is the shortest time scale in the pulse sequence. On the
other hand, the stimulated echo pathways can measure diffusion
over a much longer time, s1te.

C. Triple Echoes

The basic segment of a triple echo is similar to the direct echo
in that the magnetization remains in the transverse plane and it
involves only + and −,

+ + −−, and − − + +. [22]

The amplitude of this segment is given by

�+,+�+,−�−,− [23]

The diffusion decay contribution of this segment can be calcu-
lated from the Hahn formula for direct echo taken into account
the effectively tripled precession time,

1

12
D(γ g)2(3te)3 = 1

12
D(γ g)2(te)3 × 27. [24]

For a segment of time 3te formed by direct echo segments, the
decay would have been 1

12 D(γ g)2(te)3 × 3, thus making the con-
tribution of the triple echo a factor of 24 (=27 − 3) more than
the direct echo segments.

D. Triply Stimulated Echoes

This class has several subclasses depending on where the 0’s
are inserted into the triple echo segment.

• This subclass follows the form of the singly stimulated seg-
ments except starting and ending with ++ and −−:
+ + 0 · · · 0︸ ︷︷ ︸
s3

−−, and − − 0 · · · 0︸ ︷︷ ︸
s3

+ + . [25]
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The amplitude of this segment is

�+,+�+,0�0,0
s3−1�0,−�−,−. [26]

It is straightforward to calculate the additional diffusion decay
during this segment compared to the triple echo of 26s3.

• The second subclass is in fact a singly stimulated segment
imbedded in a triple echo segment,

− − + 0 · · · 0︸ ︷︷ ︸
s3

+, and + + − 0 · · · 0︸ ︷︷ ︸
s3

−,

and

− 0 · · · 0︸ ︷︷ ︸
s3

− + +, and + 0 · · · 0︸ ︷︷ ︸
s3

+ − −. [27]

The amplitude of these segments is

�+,+�+,−�−,0�0,0
s3−1�0,−. [28]

These segments are in fact equivalent to those formed by a singly
stimulated segment and triple echoes, for example, in Table 1,
class 9. The addition diffusion decay compared to the parent
triple echo is 2s3.

Following the above discussion, one may continue to explore
further classification of coherence segments with more com-
plexity, for example, +’s and −’s inside a triple echo (Table 1,
class 11) and more consecutive +’s and −’s (Table 1, class 15).
We do not pursue it further here for the following reasons. The
essence of our classification is to partition a CPMG coherence
pathway into a few unique segments plus direct echo segments
for the rest. These segments begin and end with the zero net
phase. Since there are many types of such segments, our classi-
fication scheme quickly becomes very inefficient. We will show
in the next section that the ones that we have discussed, in partic-
ular, the singly stimulated segments, dominate the echo signal.

IV. PERMUTATION, SPECTRUM, AND AMPLITUDE

A. Permutation: Counting Coherence Pathways

For N1 > 0, there are many permutations of the stimulated
and the direct echo segments for the same ηN . For instance,
the value of N1 determines the decay rate of all these pathways;
however, different sets of ns1 may have different amplitudes.
For a given set of ns1 , different permutations will result in iden-
tical matrix elements and thus amplitudes. Thus, in order to cal-
culate the echo signal, such degeneracy needs to be evaluated, as
listed in Table 1 for the fifth echo. For large N , the degeneracy
is enormous.

Assume there are a series of different types of segments,

s1 = 1 to l, and that there are ns1 segments for each s1. Then,
the number of possible permutations, provided all segments are
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FIG. 1. Number of coherence pathways (dashed line) for the 100th echo
formed by − 0 + and direct echo segments and their amplitude contribution
(solid line), as a function of the number of − 0 +’s, N1. Many coherence path-
ways are contributing significantly to the echo signal and it is important to count
them all. The amplitude is calculated using the asymptotic echo as a filter.

separated, is

U = (K − l)!

(K − 2l + 1)!

1∏l
i=1 ni !

, [29]

where K = N − ∑l
s1=1 (s1 − 1)ns1 . For the stimulated echo

pathways, the matrix element decays as N increases. However,
the number of possible permutations increases. For a given co-
herence pathway formed by several segments, U as a function
of echo number N shows a broad peak and the peak position
depends on the number of segments. In Fig. 1, we show the
number of coherence pathways for the 100th echo formed by
the simplest stimulated segments, +0−, as a function of the
number of such segment n1. As would be intuitively expected,
maximum U occurs when n1 is around 25–30. The contribution
to the corresponding amplitude is also shown in Fig. 1.

B. Spectrum

Equation [8] determines the echo signal as a function of the
frequency offset,�ω0, or the spectrum. Because of the frequency
dependence of the matrix elements, L and �, the decay due to
diffusion in a field gradient is generally different at different
frequencies. For example, with ideal π/2 and π pulses, the on-
resonance signal contains only the direct echo pathway and the
decay rate is given by the Hahn formula, D(γ gte)2/12. However,
the off-resonance signal has a much greater contribution from
other coherence pathways, such as the stimulated ones, thus, the
decay rate can be significantly higher.

In Fig. 2, we show a series of spectra of the singly stimu-
lated coherence pathways for the 30th echo. The spectrum of the
direct echo pathway (s = 0) is concentrated at the resonance fre-
1

quency, much narrower than those for the earlier echoes, as illus-
trated by Hürlimann (12). This is due to the finite bandwidth of
ONG

the π pulse in inverting coherences from + to −, and vice versa,
e.g., �+,− and �−,+. None of the stimulated coherence path-
ways contribute to the on-resonance signal, a result of the ideal
π pulses. The spectra of these stimulated pathways are char-
acterized by the two positive peaks at a nonzero �ω0 and by
their progressive movement further off-resonance for large N1’s.
Around �ω0 = 0, the spectra for most stimulated coherence
pathways oscillate and the oscillations are out of phase for ad-
jacent N1’s. Thus, a sum of two or more stimulated pathways
with similar N1 would result in a cancelation of the amplitude
at small �ω0. The result of such cancelation is shown in Fig. 2c
illustrating that the off-resonance signal originates primarily
from the stimulated coherence pathways. For a larger frequency
offset, the signal comes from coherence pathways with larger
N1 containing more stimulated segments. In fact, one may take
advantage of this property to determine a diffusion constant us-
ing just one CPMG echo train. Such behavior of the spectrum
of the coherence pathways is unique for the high echo numbers.
For the earlier echoes, illustrated in Fig. 8 of Ref. (12), the peaks
in the spectrum of each coherence pathway are much broader
than those for the high echoes, resulting in significant overlap
of the spectra.

Using the spectrum for each coherence pathway, we have
computed the average diffusion decay factor, ηN = N + 2N1 for
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FIG. 2. (a, b) Spectra of some singly stimulated coherence pathways for
the 30th echo listed by N1. The direct echo contributes to primarily the on-
resonance signal, and the stimulated coherence pathways contribute to off-
resonance signals. The panel (b) displays the spectra for N1 = 20 (solid line) and
N1 = 21 (dotted line). (c) Spectrum of the asymptotic echo (solid line), direct
echo (short dashed line), sum of coherence pathways N1 = 1, 2, 3, 4, 5, 6, 7, 8, 9

(long dashed line), and sum of pathways N1 = 10 to 30 (dotted line). It is clear
that the stimulated coherence pathways contribute to mainly the off-resonance
signal.
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FIG. 3. (a) The average diffusion decay factor 〈ηN 〉 (solid line) and its
variance �ηN (dashed–dotted line) are shown as a function of frequency offset,
�ω0, for the 40th echo. (b) The average number of stimulated segments, 〈N1〉
(solid line), for the 40th echo, as a function of �ω0. The spectrum is shown
as the dashed line, and it is shifted for clarity. (c) The spectrum of the average
segment length, s̄1 ≡ 〈N1/

∑
ns1 〉. Within the main peak, the average segment

length is very small and the average segment length over the entire spectrum is
1.5 for the 40th echo.

the singly stimulated coherence pathways, displayed in Fig. 3a
for N = 40. At �ω0 = 0, the decay factor is 40, the result of the
direct echo pathway. As �ω0 deviates from zero, the decay factor
increases to about a factor of three larger when |�ω0| > 1.5ω1.
The second moment of the ηN distribution is observed (Fig. 3a)
to be very small, indicating that the decay at each �ω0 is ap-
proximately exponential. This realization allows a straightfor-
ward analysis of the change of lineshape as a function of echo
number. For example, these results can be used to construct an
analytical function of the signal decay.

Furthermore, the narrow distribution of ηN indicates that at
each frequency, the signal is dominated by a group of coherence
pathways with a narrow distribution of N1, since ηN = N + 2N1

for singly stimulated coherence pathways. Thus, one may ob-
tain the average length of the stimulated segments as a function
of �ω0, Fig. 3b. Close to on-resonance, the average stimulated
segment size is very small and the coherence pathways are dom-
inated by the direct echo segments. At �ω0 ∼ ω1, N1 is about
0.5N and half of the coherence pathways are stimulated, qk = 0.
For �ω0 > 2ω1, N1 ∼ N and there are very few direct echo seg-
ments and most of the segments are stimulated. We have per-
formed similar calculations for the 30th, 40th, and 50th echoes
and the above discussion is supported by the results for all three
cases. This reaffirms that behavior of the 30th and higher echoes

well approximates that of the asymptotic echo and the above
conclusion is indeed valid for high echo numbers.
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In Fig. 3c, we show the average segment length s̄1 as a function
of �ω0, for the 40th echo,

s̄1 ≡
〈

N1∑N1
s1=0 ns1

〉
Q, [30]

averaged for all coherence pathways Q. Within the width of
the main peak, |�ω0| < ω1, s̄1 is less than 2, and the segment
size averaged for the entire spectrum is 1.45. For the 50th echo,
s̄1 = 1.45, too. This result indicates that the dominant coherence
segments are + −, +0−, and +00−, and their variance and the
long stimulated segments with large s1 are not important even
when N1 can be as large as N/2 at |�ω0| ∼ ω1. We will further
discuss this result later with regard to restricted diffusion.

C. Signal Amplitude

When one number is expected to represent the echo signal, it
generally combines the signal at all frequencies. For example,
one may take an integral of the echo in time domain corre-
sponding to on-resonance, or the peak height corresponding to
an integration in the frequency domain, or finite bandwidth can
be applied in the detection (8). In general, one may assign a
weighting function w(ω) to filter the echo signal,

AN =
∫

dωM N (ω)w(ω)

[
∫

dωw∗(ω)w(ω)]1/2
, [31]

where M N is the spectrum for the N th echo. We follow Ref. (12)
to use the asymptotic echo spectrum as the filter w(ω) for op-
timal signal-to-noise ratio. In Fig. 4, we show the amplitude
contribution from each coherence pathway for N = 1–14. This
figure is similar to Fig. 12 in Ref. (12) except that the hori-
zontal axis is linear in ηN − N . The benefit of such an axis is
that it allows a straightforward identification of the coherence
pathways from such a diagram. For example, the position at
ηN − N = 0, 2, 4, 6, . . . , corresponds to N1 = 0, 1, 2, 3, . . . of
the singly stimulated coherence pathways.

In Fig. 5, we show the amplitudes of the first 14 singly stim-
ulated echoes (N1 from 0 to 13). The decay of the direct echo
is due to the off-resonance effects on the matrix element �+,−
since there is only one direct echo pathway. It is intriguing to
note that some of the coherence pathways have identical am-
plitudes for large N , for example, direct echo and N1 = 1, and
pathways with N1 = 2i and 2i + 1 (i is an integer).

In the inset of Fig. 5, we show the sum of contributions from
the direct echo and the singly stimulated pathways, as a func-
tion of N . For the first 20 echoes, one may observe that these
two classes account for, on average, 95% of the echo signals.
The amplitude oscillation for the early echoes decreases rapidly
when N approaches 20. Beyond the 20th echoes, the contribution
from the above coherence pathways decays gradually due to the

effects of the matrix elements. Including more coherence path-
ways formed by the first 20 singly stimulated segments recovers



O

T
a
D
o
R
g

a
p
s
o

a
η

4
t
m
f
t
o
t
o
d

w
c
p
r
r
v
γ

s

88 Y.-Q. S

Decay factor Nη-N

0 40 80 120 160 200

N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FIG. 4. Amplitude of individual coherence pathways for up to the 14th
echo. The horizontal axis is ηN − N so that one can directly identify coherence
pathways from this diagram. The pulses in the CPMG sequence are assumed to
be accurate.
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γ 2g2t3

e N/12 for N = 40 (solid line). The dashed line is the decay for the
n-resonance signal, i.e., the direct echo pathway. The points are data from
ef. (12) extending from Dγ 2g2t3

e N/12 ≈ 0 to 2.5. The solid line is clearly a
ood match for the data except for a 5% error when Dγ 2g2t3

e N/12 < 0.1.

portion of that amplitude. Nevertheless, this is still not a com-
lete account of all singly stimulated segments. When all singly
timulated pathways are included, we obtain 0.942 for signals
f the 30th, 40th, and 50th echoes.

After integration over the entire frequency spectrum using the
symptotic echo as a filter, we found that the average decay factor
N = 1.32N , with a second moment of (0.36N )2, for the 30th,
0th, and 50th echoes. This result suggests practical strategies
o approximate the echo decay. To the lowest order of approxi-

ation when γ 2g2t3
e N/12 < 1, the decay of CPMG echoes is a

actor 32% faster than the Hahn formula. For γ 2g2t3
e N/12 > 1,

he decay is clearly multiexponential with a range of about 30%
f the decay rate. The distribution of decay rate calculated from
he spectra in Fig. 2 is shown in Fig. 6 for signals with and with-
ut the filter. Using the distribution, one may express the echo
ecay as a sum of a series of exponential functions

M(α)

M0
= exp(−α) ·

{
a0 +

40∑
l=1

al exp

(
−α

2l

40

)}
, [32]

here α ≡ Dγ 2g2t3
e N/12 and al is given in Table 2 for the

ase of filtering. We note that the above formula has only one
arameter α and can be directly used in an inversion algo-
ithm. Equation [32] is compared with the experimental data
eported in Ref. (12), in Fig. 6. The calculated decay curve fits
ery well the experimental data except for the 5% error when
2g2t3

e N/12 < 0.1. This error is due to the fact that the singly
timulated pathways miss 5% of the signal. This error can be

orrected empirically or by including more coherence segments
uch as triple echoes.
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TABLE 2
Coefficients of the Decay Rate Distribution, al , for the 40th Echo

with Asymptotic Echo Filtering

a0 = 0.1672 a1 = 0.1633 a2 = 0.0738 a3 = 0.0724

0.0490 0.0481 0.0360 0.0356
0.0279 0.0276 0.0221 0.0220
0.0178 0.0178 0.0145 0.0146
0.0118 0.0120 0.0097 0.0099
0.0079 0.0082 0.0064 0.0067
0.0052 0.0055 0.0042 0.0048
0.0038 0.0048 0.0042 0.0052
0.0044 0.0049 0.0034 0.0035
0.0017 0.0022 0.0002 0.0020

Note. The index increments along the row first, then column.

V. EFFECTS OF INACCURATE PULSES

When the RF pulses in CPMG are not accurately π/2 and
π , certain aspects of the spin dynamics will be changed due
to the matrix elements. Although the coherence pathways will
remain the same, their weight will be different. For example,
we can illustrate this effect using the on-resonance signal for
the second echo. As the tipping angle ω1t180 deviates from
π , the direct echo amplitude, ∝ sin(ω1t90) cos(ω1t180)2, will de-

crease and that of the stimulated coherence pathways will in-

2
crease from zero, ∝ sin(ω1t90) sin(ω1t180) . We show the results
of similar calculations as those presented in early sections on

0
0.2

0.4

0.6

0.8

0

20

40

60

80

100

120

0

2

4

6

8

10

12

-6 -4 -2 0 2 4
∆ω0 / ω1

-6 -4 -2 0 2 4

∆ω0 / ω1

-6 -4 -2 0 2 4
∆ω0 / ω1

1 2

η
3

0

10

20

30

40

<η
N

>
 and ∆η

N
D

istributions
S

pe
ct

ra

(a) (b)

(d)(c)

s 1

FIG. 7. The CPMG spin dynamics for the 40th echo with ω1t180 = 0.7π . (a) Spectra of the asymptotic echo (solid line), sum of coherence pathways N1 = 1–9
(dashed line), N1 = 10–20 (dash-dotted line), N1 = 21–29 (short dashed line), and N1 = 30–40 (long dashed line). The signal of direct echo is essentially zero on
this graph. (b) The average diffusion decay factor 〈ηN 〉 (solid line) and its variance �ηN (dashed-dotted line) are shown as a function of frequency offset, �ω0.∑

• Due to the dominant contribution of the low-N1 coherence
pathways, the peak of the decay rate distribution moves to higher
(c) The spectrum of the average segment length, s̄ ≡ 〈N1/ ns1〉. Within the mai
over the entire spectrum is 1.71. (d) Amplitude of the decay rate (η) distribution.
without such filter (dashed line).
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ideal pulses in Fig. 7 for ω1t180 = 0.7π and the 40th echo. From
these calculations, we have made the following observations:

• When the tipping angle deviates significantly from π , the
�+,− is less than unity for all frequencies. Thus, the direct echo
decays quickly and it has little contribution for large-N echoes.
For example, in Fig. 7a, the spectrum for N1 = 0 is essentially
zero. The low N1 coherence pathways show spectra that peaked
at �ω0 = 0, similar to the spectrum of the direct echo for ideal
pulses. The amplitude of these low-N1 spectra increases as N1

and reaches a maximum at certain N1 depending on ω1t180. The
spectra for large N1 are similar to their counterparts in the case
of ideal pulses in that they have two peaks at off-resonance
positions and their spectra near �ω0 = 0 oscillates. Averaging
the spectra with similar N1’s cancels such oscillations resulting
in signals only at off-resonance frequencies.

• At all frequency offsets, the decay is approximately expo-
nential, illustrated by the small second moments of the decay
rate distribution shown in Fig. 7b. The rate at �ω0 = 0 is also
raised from its value for ideal pulses, a result of the stimulated
pathways being the main contributors of the signal.

• Similar to the case of ideal pulses, the average segment
length remains small within the width of the spectrum, Fig. 7c.
Averaging over the entire spectrum, s̄1 = 1.7 for ω1t180 = 0.7π ,
only increasing slightly from the case of ideal pulses (see
Table 3).
n peak, the average segment length is very small and the average segment length
The distributions were calculated with asymptotic echo filtering (solid line) and
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TABLE 3
The Average Decay Rate η̄, Square-Root of the Sec-

ond Moment of the η Distribution, ∆η, and the Average
Segment Length s̄1, Calculated for Several ω1t180

ω1t180/π η̄ �η s̄1

0.5 1.85 0.22 2.38
0.6 1.63 0.26 1.96
0.7 1.47 0.29 1.71
0.8 1.37 0.32 1.57
0.9 1.31 0.34 1.50
1 1.30 0.36 1.45

Note. This calculation uses the asymptotic echo spectrum as the
filter function w(ω).

η, Fig. 7d, compared to the case of ideal pulses. The signal decay
remains multiexponential; however, the range of η is reduced as
the tipping angle deviates from π .

In these calculations, we have neglected the spatial variation of
the RF field. To summarize, the main effects of the inaccurate
RF pulses are the reduction of signal and the further increase of
the decay rate.

VI. RELATIONSHIP TO k-SPACE FORMALISM

In MRI and NMR experiments using magnetic field gradi-
ents, it is often convenient to use a wave vector (often noted
as k or q) to describe the spatial modulation of the magneti-
zation and its change in a manner similar to the description of
scattered waves (6, 19, 22–24). In this scheme, the progress
of the wave vector in an experiment is usually illustrated in a
one-dimensional or two-dimensional diagram depicting the ef-
fects of the gradients and RF pulses in changing the modulation.
Each particular passage of k to the final echo signal corresponds
to a coherence pathway described in this paper. The two de-
scriptions are, in fact, equivalent and the coherence pathways
can be easily mapped onto the k-space formalism by defining
k(T ) = ∫ T

0 γ gq(t) dt . Here, q(t) is the continuous version of
qk used in earlier sections. We will define k0 = γ gte/2 as the
unit, which is the value before the first π pulse. The direct echo
pathway corresponds to a k trajectory zigzagging around the
origin between k = +k0 and k = −k0. The singly stimulated
segments correspond to k rises to ±k0, then stay at that value
for a time period of s1te before coming back to k = 0. In fact,
the entire ensemble of the singly stimulated coherence pathways
are k trajectories that stay completely within ±k0. Similarly, the
triple echo and triply stimulated segments are those trajectories
entering the domains of [k0, 3k0] or [−3k0, −k0]. Thus, the
conclusion from earlier sections that the direct and singly stim-
ulated echoes are the dominant contribution to CPMG signals

can be visualized as those wave-vector trajectories that do not
deviate much from the line of no modulation, i.e., k = 0.
ONG

VII. EFFECT OF RESTRICTED DIFFUSION

It is well known that molecular diffusion is restricted in porous
media due to the confinement of the pore space (25). One of the
most widely used approaches is the concept of time dependent
diffusion constant, D(t) (20, 25)

D(t) ≡ 〈r2〉
6t

, [33]

where t is the diffusion time and 〈r2〉 is the mean-square dis-
placement. For diffusion in bulk fluid, D(t) is a constant in time,
since 〈r2〉 = 6Dt . In porous media, D(t) will be reduced from the
bulk value when

√
Dt is close to the geometrical length scales of

the pores, such as the inverse of the surface-to-volume ratio and
the linear dimension (26–29). This behavior has been observed a
wide range of porous media using pulsed-field gradients (PFG)
NMR methods (19). In a PFG experiment, the diffusion time
can be easily determined from the pulse sequence. However, in
a CPMG experiment, it is not obvious from the pulse sequence
directly what the diffusion time should be and what diffusion
constant should be used. Previous works (15, 21, 30) have fo-
cused on the direct echo pathway and showed that the diffusion
time for this pathway should be on the order of te. On the other
hand, coherence pathways with large s1 could necessitate the
use of a long time diffusion constant, i.e., D(s1te). It has been
unclear whether these high s1 pathways could have a significant
contribution to the CPMG echoes.

Previous works, such as Refs. (8, 12), have shown that the
stimulated segments have a significant contribution to the sig-
nal. Our analysis of the spectra for different pathways in earlier
sections indicates that these stimulated segments increase the
average decay rate by 32% compared to the Hahn formula. Fur-
thermore, we found that the dominant contribution is from those
coherence pathways with very short segments and s̄1 remains
very small, s̄1 = 1.45–1.85 for a wide range of tipping angles.
The average time scale that governs the diffusion decay is ap-
proximately (s̄1 +1/3)te < 2.2te. Thus, the inclusion of the addi-
tional coherence pathways in the off-resonance signals does not
extend significantly the diffusion time scale compared to that of
the direct echo. As a result, the effects of restricted diffusion and
the characteristic regimes outlined by Sen et al. in Refs. (15, 21,
30) based on the direct echo pathway are in principle applicable
to the off-resonance signals of CPMG.

VIII. CONCLUSIONS

This paper outlines a scheme to understand the CPMG coher-
ence pathways and the effect of molecular diffusion by breaking
up the CPMG coherence pathways into small and simple seg-
ments. We found that the direct echo and the stimulated segments

are most abundant and contribute about 95% of the CPMG echo
signal. Inclusion of such coherence pathways in the detection
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could increase the average decay rate by 32%. For the N th echo,
there will be on average 0.16N segments of q = 0. These coher-
ence pathways are predominantly constituted of short segments
with an average segment length of 1.5te.

These observations suggest that despite the enormously large
variety of the contributing pathways, a conceptual understanding
of CPMG remains quite simple. There is a fundamental repeating
unit of the coherence and it is only slightly expanded from that
of the Hahn echo coherence pathway.

Furthermore, these results are relevant for applications of the
CPMG sequence especially to materials made of multiple com-
ponents of relaxation and diffusion. For example, we show that
one has to calibrate the detection scheme as well as the RF
strength in order to account quantitatively for the enhanced de-
cay rates. We have provided an analytical form for the CPMG
echo decay (Eq. [32]) that could be used as a kernel function to
invert for the distribution of the diffusion constants from single
and multiple CPMG echo trains.
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